Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease.
نویسندگان
چکیده
Long recognized as a malodorous and highly toxic gas, recent experimental studies have revealed that hydrogen sulfide (H2S) is produced enzymatically in all mammalian species including man and exerts several critical actions to promote cardiovascular homeostasis and health. During the past 15 years, scientists have determined that H2S is produced by 3 endogenous enzymes and exerts powerful effects on endothelial cells, smooth muscle cells, inflammatory cells, mitochondria, endoplasmic reticulum, and nuclear transcription factors. These effects have been reported in multiple organ systems, and the majority of data clearly indicate that H2S produced by the endogenous enzymes exerts cytoprotective actions. Recent preclinical studies investigating cardiovascular diseases have demonstrated that the administration of physiological or pharmacological levels of H2S attenuates myocardial injury, protects blood vessels, limits inflammation, and regulates blood pressure. H2S has emerged as a critical cardiovascular signaling molecule similar to nitric oxide and carbon monoxide with a profound effect on the heart and circulation. Our improved understanding of how H2S elicits protective actions, coupled with the rapid development of novel H2S-releasing agents, has resulted in heightened enthusiasm for the clinical translation of this ephemeral gaseous molecule. This review will examine our current state of knowledge about the actions of H2S within the cardiovascular system with an emphasis on the therapeutic potential and molecular cross talk between H2S, nitric oxide, and carbon monoxide.
منابع مشابه
The Role of Hydrogen Sulfide on Cardiovascular Homeostasis: An Overview with Update on Immunomodulation
Hydrogen sulfide (H2S), the third endogenous gaseous signaling molecule alongside nitric oxide (NO) and carbon monoxide, is synthesized by multiple enzymes in cardiovascular system. Similar to other gaseous mediators, H2S has demonstrated a variety of biological activities, including anti-oxidative, anti-apoptotic, pro-angiogenic, vasodilating capacities and endothelial NO synthase modulating a...
متن کاملRecent Development of Hydrogen Sulfide Releasing/Stimulating Reagents and Their Potential Applications in Cancer and Glycometabolic Disorders
As an important endogenous gaseous signaling molecule, hydrogen sulfide (H2S) exerts various effects in the body. A variety of pathological changes, such as cancer, glycometabolic disorders, and diabetes, are associated with altered endogenous levels of H2S, especially decreased. Therefore, the supplement of H2S is of great significance for the treatment of diseases containing the above patholo...
متن کاملHydrogen Sulfide as an Endogenous Modulator in Mitochondria and Mitochondria Dysfunction
Hydrogen sulfide (H(2)S) has historically been considered to be a toxic gas, an environmental and occupational hazard. However, with the discovery of its presence and enzymatic production through precursors of L-cysteine and homocysteine in mammalian tissues, H(2)S has recently received much interest as a physiological signaling molecule. H(2)S is a gaseous messenger molecule that has been impl...
متن کاملAnti-Atherogenic Effect of Hydrogen Sulfide by Over-Expression of Cystathionine Gamma-Lyase (CSE) Gene
Hydrogen sulfide (H2S) is an important gaseous signaling molecule that functions in physiological and pathological conditions, such as atherosclerosis. H2S dilates vessels and therefore has been suggested as an anti-atherogenic molecule. Since cystathionine gamma-lyase (CSE) enzyme is responsible for producing H2S in the cardiovascular system, we hypothesized that up-regulation of CSE expressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 114 4 شماره
صفحات -
تاریخ انتشار 2014